29.12.22 problem 341

Internal problem ID [4941]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 12
Problem number : 341
Date solved : Tuesday, March 04, 2025 at 07:32:24 PM
CAS classification : [_separable]

\begin{align*} x \left (a x +1\right ) y^{\prime }+a -y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x*(a*x+1)*diff(y(x),x)+a-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {c_{1} x +a}{a x +1} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 24
ode=x(1+a x)D[y[x],x]+a-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {a+c_1 x}{a x+1} \\ y(x)\to a \\ \end{align*}
Sympy. Time used: 0.318 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a + x*(a*x + 1)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x}{x + \frac {1}{a}} + a \]