29.26.16 problem 752

Internal problem ID [5337]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 752
Date solved : Monday, January 27, 2025 at 11:15:45 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{2}+x^{2}&=4 y \end{align*}

Solution by Maple

Time used: 0.052 (sec). Leaf size: 136

dsolve(diff(y(x),x)^2+x^2 = 4*y(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )^{2}+2 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )^{2}} \\ y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (-\frac {c_{1} \sqrt {2}\, x}{2}\right )^{2}+2 \operatorname {LambertW}\left (-\frac {c_{1} \sqrt {2}\, x}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (-\frac {c_{1} \sqrt {2}\, x}{2}\right )^{2}} \\ y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (\frac {c_{1} \sqrt {2}\, x}{2}\right )^{2}+2 \operatorname {LambertW}\left (\frac {c_{1} \sqrt {2}\, x}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (\frac {c_{1} \sqrt {2}\, x}{2}\right )^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 17.688 (sec). Leaf size: 152

DSolve[(D[y[x],x])^2+x^2==4*y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\text {arctanh}\left (\frac {x}{\sqrt {4 y(x)-x^2}}\right )+\frac {x \sqrt {4 y(x)-x^2}}{2 x^2-4 y(x)}+\int \frac {x \left (x^2-4 y(x)\right )}{\left (x^2-2 y(x)\right )^2} \, dx&=c_1,y(x)\right ] \\ \text {Solve}\left [\text {arctanh}\left (\frac {x}{\sqrt {4 y(x)-x^2}}\right )-\frac {x \sqrt {4 y(x)-x^2}}{2 \left (x^2-2 y(x)\right )}+\int \frac {x \left (x^2-4 y(x)\right )}{\left (x^2-2 y(x)\right )^2} \, dx&=c_1,y(x)\right ] \\ \end{align*}