29.13.4 problem 358

Internal problem ID [4958]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 13
Problem number : 358
Date solved : Tuesday, March 04, 2025 at 07:34:51 PM
CAS classification : [_separable]

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }&=\left (x^{2}-x +1\right ) y \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=x*(-x^2+1)*diff(y(x),x) = (x^2-x+1)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {c_{1} x}{\sqrt {x -1}\, \left (x +1\right )^{{3}/{2}}} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 30
ode=x(1-x^2)D[y[x],x]==(1-x+x^2)y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1 x}{(x+1) \sqrt {1-x^2}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.368 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x**2)*Derivative(y(x), x) - (x**2 - x + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x}{\sqrt {x - 1} \left (x + 1\right )^{\frac {3}{2}}} \]