29.26.29 problem 765

Internal problem ID [5350]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 765
Date solved : Monday, January 27, 2025 at 11:16:52 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \end{align*}

Solution by Maple

Time used: 0.118 (sec). Leaf size: 220

dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b) = 0,y(x), singsol=all)
 
\begin{align*} \frac {\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\, \left (-\ln \left (2\right )+\ln \left (-a -b +2 y \left (x \right )+2 \sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\right )\right )}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}-\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}d \textit {\_a}}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+c_{1} &= 0 \\ \frac {\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\, \left (-\ln \left (2\right )+\ln \left (-a -b +2 y \left (x \right )+2 \sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\right )\right )}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}d \textit {\_a}}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 4.224 (sec). Leaf size: 89

DSolve[(D[y[x],x])^2+ f[x]*(y[x]-a)*(y[x]-b)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{2} \left ((b-a) \cosh \left (\int _1^x-i \sqrt {f(K[2])}dK[2]+c_1\right )+a+b\right ) \\ y(x)\to \frac {1}{2} \left ((b-a) \cosh \left (\int _1^xi \sqrt {f(K[3])}dK[3]+c_1\right )+a+b\right ) \\ y(x)\to a \\ y(x)\to b \\ \end{align*}