29.27.2 problem 767

Internal problem ID [5352]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 767
Date solved : Monday, January 27, 2025 at 11:16:55 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right )&=0 \end{align*}

Solution by Maple

Time used: 0.271 (sec). Leaf size: 156

dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b)*(y(x)-c) = 0,y(x), singsol=all)
 
\begin{align*} \int _{}^{y \left (x \right )}\frac {1}{\sqrt {\left (\textit {\_a} -a \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -c \right )}}d \textit {\_a} -\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-c \right ) \left (y \left (x \right )-b \right ) \left (y \left (x \right )-a \right )}d \textit {\_a}}{\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right ) \left (y \left (x \right )-c \right )}}+c_{1} &= 0 \\ \int _{}^{y \left (x \right )}\frac {1}{\sqrt {\left (\textit {\_a} -a \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -c \right )}}d \textit {\_a} +\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-c \right ) \left (y \left (x \right )-b \right ) \left (y \left (x \right )-a \right )}d \textit {\_a}}{\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right ) \left (y \left (x \right )-c \right )}}+c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 39.505 (sec). Leaf size: 228

DSolve[(D[y[x],x])^2+f[x]*(y[x]-a)(y[x]-b)*(y[x]-c)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x-\sqrt {f(K[1])}dK[1]\right )|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x-\sqrt {f(K[1])}dK[1]\right )|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\ y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x\sqrt {f(K[2])}dK[2]\right )|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x\sqrt {f(K[2])}dK[2]\right )|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\ y(x)\to a \\ y(x)\to b \\ y(x)\to c \\ \end{align*}