29.13.23 problem 377

Internal problem ID [4977]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 13
Problem number : 377
Date solved : Tuesday, March 04, 2025 at 07:39:47 PM
CAS classification : [_rational, _Riccati]

\begin{align*} \left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 478
ode:=(c*x^2+b*x+a)^2*(diff(y(x),x)+y(x)^2)+A = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {2 c \left (c_{1} \left (i \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}\, c \sqrt {4 a c -b^{2}}-\sqrt {-4 a c +b^{2}}\, \left (2 c x +b \right )\right ) {\left (\frac {-b +i \sqrt {4 a c -b^{2}}-2 c x}{b +i \sqrt {4 a c -b^{2}}+2 c x}\right )}^{-\frac {c \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}}{2 \sqrt {-4 a c +b^{2}}}}-\left (i \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}\, c \sqrt {4 a c -b^{2}}+\sqrt {-4 a c +b^{2}}\, \left (2 c x +b \right )\right ) {\left (\frac {-b +i \sqrt {4 a c -b^{2}}-2 c x}{b +i \sqrt {4 a c -b^{2}}+2 c x}\right )}^{\frac {c \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}}{2 \sqrt {-4 a c +b^{2}}}}\right )}{\sqrt {-4 a c +b^{2}}\, \left (b +i \sqrt {4 a c -b^{2}}+2 c x \right ) \left (-b +i \sqrt {4 a c -b^{2}}-2 c x \right ) \left (c_{1} {\left (\frac {-b +i \sqrt {4 a c -b^{2}}-2 c x}{b +i \sqrt {4 a c -b^{2}}+2 c x}\right )}^{-\frac {c \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}}{2 \sqrt {-4 a c +b^{2}}}}+{\left (\frac {-b +i \sqrt {4 a c -b^{2}}-2 c x}{b +i \sqrt {4 a c -b^{2}}+2 c x}\right )}^{\frac {c \sqrt {\frac {-4 a c +b^{2}-4 A}{c^{2}}}}{2 \sqrt {-4 a c +b^{2}}}}\right )} \]
Mathematica. Time used: 3.217 (sec). Leaf size: 743
ode=(a+b x+c x^2)^2 (D[y[x],x]+y[x]^2)+A==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {b^2 c_1 \left (-\exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )\right )+b c_1 \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}} \exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )+4 A c_1 \exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )+4 a c c_1 \exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )+2 c c_1 x \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}} \exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )+\sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}}+b+2 c x}{2 (a+x (b+c x)) \left (1+c_1 \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}} \exp \left (\frac {2 \sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \arctan \left (\frac {b+2 c x}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )\right )} \\ y(x)\to \frac {2 c x \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}}+b \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}}+4 a c+4 A-b^2}{2 \sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}} (a+x (b+c x))} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(A + (y(x)**2 + Derivative(y(x), x))*(a + b*x + c*x**2)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-A - a**2*y(x)**2 - 2*a*b*x*y(x)**2 - 2*a*c*x**2*y(x)**2 - b**2*x**2*y(x)**2 - 2*b*c*x**3*y(x)**2 - c**2*x**4*y(x)**2)/(a**2 + 2*a*b*x + 2*a*c*x**2 + b**2*x**2 + 2*b*c*x**3 + c**2*x**4) cannot be solved by the factorable group method