29.27.14 problem 780

Internal problem ID [5364]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 780
Date solved : Monday, January 27, 2025 at 11:17:21 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+x y^{\prime }+1&=0 \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 63

dsolve(diff(y(x),x)^2+x*diff(y(x),x)+1 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {x^{2}}{4}-\frac {x \sqrt {x^{2}-4}}{4}+\ln \left (\sqrt {x^{2}-4}+x \right )+c_{1} \\ y \left (x \right ) &= \frac {x \sqrt {x^{2}-4}}{4}-\ln \left (\sqrt {x^{2}-4}+x \right )-\frac {x^{2}}{4}+c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 101

DSolve[(D[y[x],x])^2+x*D[y[x],x]+1==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\left (x^2-4\right ) \left (4 \arcsin \left (\frac {x}{2}\right )+\sqrt {4-x^2} x\right )}{4 \sqrt {-\left (x^2-4\right )^2}}-\frac {x^2}{4}+c_1 \\ y(x)\to -\frac {x^2}{4}+\frac {1}{4} \sqrt {x^2-4} x-\log \left (\sqrt {x^2-4}+x\right )+c_1 \\ \end{align*}