29.27.26 problem 792

Internal problem ID [5376]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 792
Date solved : Monday, January 27, 2025 at 11:17:30 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} {y^{\prime }}^{2}+2 x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 642

dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\left (x^{2}-x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right ) \left (x^{2}+3 x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right )}{4 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+2 x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+x^{2}\right ) \left (i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-6 x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+x^{2}\right )}{16 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+x^{2}+2 x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right ) \left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+x^{2}-6 x \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right )}{16 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 60.087 (sec). Leaf size: 931

DSolve[(D[y[x],x])^2+2*x*D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (-x^2+\frac {x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ y(x)\to \frac {1}{72} \left (-18 x^2-\frac {9 i \left (\sqrt {3}-i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ y(x)\to \frac {1}{4} \left (-x^2+\frac {x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 \left (1+i \sqrt {3}\right ) x \left (-x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\ \end{align*}