29.29.3 problem 825

Internal problem ID [5408]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 825
Date solved : Monday, January 27, 2025 at 11:21:13 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.267 (sec). Leaf size: 132

dsolve(diff(y(x),x)^2-2*x^3*y(x)^2*diff(y(x),x)-4*x^2*y(x)^3 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {4}{x^{4}} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \frac {\left (\sqrt {2}\, x^{2} c_{1} -2\right ) c_{1}^{2}}{2 c_{1}^{2} x^{4}-4} \\ y \left (x \right ) &= -\frac {\left (\sqrt {2}\, x^{2} c_{1} +2\right ) c_{1}^{2}}{2 c_{1}^{2} x^{4}-4} \\ y \left (x \right ) &= \frac {-2 \sqrt {2}\, x^{2}+2 c_{1}}{c_{1} \left (-2 x^{4}+c_{1}^{2}\right )} \\ y \left (x \right ) &= \frac {2 \sqrt {2}\, x^{2}+2 c_{1}}{c_{1} \left (-2 x^{4}+c_{1}^{2}\right )} \\ \end{align*}

Solution by Mathematica

Time used: 3.668 (sec). Leaf size: 179

DSolve[(D[y[x],x])^2-2*x^3*y[x]^2*D[y[x],x]-4*x^2*y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\frac {x \sqrt {x^4 y(x)+4} y(x)^{3/2} \log \left (\sqrt {x^4 y(x)+4}-x^2 \sqrt {y(x)}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {x y(x)^{3/2} \sqrt {x^4 y(x)+4} \log \left (\sqrt {x^4 y(x)+4}-x^2 \sqrt {y(x)}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to 0 \\ y(x)\to -\frac {4}{x^4} \\ \end{align*}