29.29.7 problem 829

Internal problem ID [5412]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 829
Date solved : Monday, January 27, 2025 at 11:21:26 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \end{align*}

Solution by Maple

Time used: 0.233 (sec). Leaf size: 150

dsolve(diff(y(x),x)^2-3*x*y(x)^(2/3)*diff(y(x),x)+9*y(x)^(5/3) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {x^{6}}{64} \\ y \left (x \right ) &= 0 \\ \ln \left (x \right )+\frac {\ln \left (\frac {64 y \left (x \right )}{x^{6}}-1\right )}{6}-\frac {\ln \left (4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}}-1\right )}{6}-\frac {\ln \left (16 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{2}/{3}}+4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}}+1\right )}{6}+\frac {\ln \left (\frac {y \left (x \right )}{x^{6}}\right )}{6}-\frac {\sqrt {-\frac {y \left (x \right ) \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}} \left (4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}}-1\right )}{x^{6}}}\, \operatorname {arctanh}\left (\sqrt {-4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}}+1}\right )}{\left (\frac {y \left (x \right )}{x^{6}}\right )^{{2}/{3}} \sqrt {-4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{{1}/{3}}+1}}-c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 13.698 (sec). Leaf size: 418

DSolve[(D[y[x],x])^2-3 x y[x]^(2/3) D[y[x],x]+9 y[x]^(5/3)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}}{8 y(x)-2 x^2 y(x)^{2/3}}+\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}+\log \left (4 y(x)^{4/3}-x^2 y(x)\right )-\log \left (x^2 \left (-y(x)^{2/3}\right )+\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}+4 y(x)\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{6} \left (\frac {3 \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}+6 \log \left (4 y(x)^{4/3}-x^2 y(x)\right )-6 \log \left (x^2 y(x)^{2/3}+\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}-4 y(x)\right )\right )-\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}