29.29.18 problem 840

Internal problem ID [5423]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 840
Date solved : Monday, January 27, 2025 at 11:21:55 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.046 (sec). Leaf size: 85

dsolve(5*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} \frac {c_{1}}{\left (-30 x -10 \sqrt {9 x^{2}+20 y \left (x \right )}\right )^{{3}/{2}}}+\frac {2 x}{5}-\frac {\sqrt {9 x^{2}+20 y \left (x \right )}}{5} &= 0 \\ \frac {c_{1}}{\left (-30 x +10 \sqrt {9 x^{2}+20 y \left (x \right )}\right )^{{3}/{2}}}+\frac {2 x}{5}+\frac {\sqrt {9 x^{2}+20 y \left (x \right )}}{5} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 13.850 (sec). Leaf size: 771

DSolve[5 (D[y[x],x])^2+3 x D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [16 \text {$\#$1}^5+8 \text {$\#$1}^4 x^2+\text {$\#$1}^3 x^4+4000 \text {$\#$1}^2 e^{5 c_1} x+1800 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-200000 e^{10 c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+8 \text {$\#$1}^4 x^2+\text {$\#$1}^3 x^4+4000 \text {$\#$1}^2 e^{5 c_1} x+1800 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-200000 e^{10 c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+8 \text {$\#$1}^4 x^2+\text {$\#$1}^3 x^4+4000 \text {$\#$1}^2 e^{5 c_1} x+1800 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-200000 e^{10 c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+8 \text {$\#$1}^4 x^2+\text {$\#$1}^3 x^4+4000 \text {$\#$1}^2 e^{5 c_1} x+1800 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-200000 e^{10 c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [16 \text {$\#$1}^5+8 \text {$\#$1}^4 x^2+\text {$\#$1}^3 x^4+4000 \text {$\#$1}^2 e^{5 c_1} x+1800 \text {$\#$1} e^{5 c_1} x^3+216 e^{5 c_1} x^5-200000 e^{10 c_1}\&,5\right ] \\ y(x)\to \text {Root}\left [3200000 \text {$\#$1}^5+1600000 \text {$\#$1}^4 x^2+200000 \text {$\#$1}^3 x^4-4000 \text {$\#$1}^2 e^{5 c_1} x-1800 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [3200000 \text {$\#$1}^5+1600000 \text {$\#$1}^4 x^2+200000 \text {$\#$1}^3 x^4-4000 \text {$\#$1}^2 e^{5 c_1} x-1800 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [3200000 \text {$\#$1}^5+1600000 \text {$\#$1}^4 x^2+200000 \text {$\#$1}^3 x^4-4000 \text {$\#$1}^2 e^{5 c_1} x-1800 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [3200000 \text {$\#$1}^5+1600000 \text {$\#$1}^4 x^2+200000 \text {$\#$1}^3 x^4-4000 \text {$\#$1}^2 e^{5 c_1} x-1800 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [3200000 \text {$\#$1}^5+1600000 \text {$\#$1}^4 x^2+200000 \text {$\#$1}^3 x^4-4000 \text {$\#$1}^2 e^{5 c_1} x-1800 \text {$\#$1} e^{5 c_1} x^3-216 e^{5 c_1} x^5-e^{10 c_1}\&,5\right ] \\ y(x)\to 0 \\ \end{align*}