29.16.3 problem 446

Internal problem ID [5044]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 16
Problem number : 446
Date solved : Tuesday, March 04, 2025 at 07:45:49 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (2 x +y\right ) y^{\prime }+x -2 y&=0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 24
ode:=(y(x)+2*x)*diff(y(x),x)+x-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \tan \left (\operatorname {RootOf}\left (4 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_{1} \right )\right ) x \]
Mathematica. Time used: 0.036 (sec). Leaf size: 36
ode=(2 x+y[x])D[y[x],x]+(x-2 y[x])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \arctan \left (\frac {y(x)}{x}\right )+\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+1\right )=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 1.420 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (2*x + y(x))*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {1 + \frac {y^{2}{\left (x \right )}}{x^{2}}} \right )} - 2 \operatorname {atan}{\left (\frac {y{\left (x \right )}}{x} \right )} \]