29.29.34 problem 857
Internal
problem
ID
[5439]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
29
Problem
number
:
857
Date
solved
:
Monday, January 27, 2025 at 11:23:37 AM
CAS
classification
:
[[_homogeneous, `class G`]]
\begin{align*} x {y^{\prime }}^{2}+y^{\prime } y+x^{3}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.092 (sec). Leaf size: 272
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)+x^3 = 0,y(x), singsol=all)
\begin{align*}
-\int _{\textit {\_b}}^{x}\frac {y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\textit {\_a} \left (5 y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}\right )}d \textit {\_a} -2 \left (\int _{}^{y \left (x \right )}\frac {1+\left (40 \textit {\_f} -8 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (-5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{5 \textit {\_f} -\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} \right )+c_{1} &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {y \left (x \right )+\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\left (\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}+5 y \left (x \right )\right ) \textit {\_a}}d \textit {\_a} +2 \left (\int _{}^{y \left (x \right )}\frac {-1+8 \left (\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f}}d \textit {\_f} \right )+c_{1} &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 1.046 (sec). Leaf size: 107
DSolve[x (D[y[x],x])^2+y[x] D[y[x],x]+x^3==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{5 K[2]+\sqrt {K[2]^2-4}}dK[2]\&\right ]\left [\int _1^x-\frac {1}{2 K[3]}dK[3]+c_1\right ] \\
y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[4]^2-4}-5 K[4]}dK[4]\&\right ]\left [\int _1^x\frac {1}{2 K[5]}dK[5]+c_1\right ] \\
\end{align*}