29.30.3 problem 861

Internal problem ID [5443]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 861
Date solved : Monday, January 27, 2025 at 11:24:04 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \end{align*}

Solution by Maple

Time used: 0.091 (sec). Leaf size: 44

dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -x -2 \sqrt {x} \\ y \left (x \right ) &= -x +2 \sqrt {x} \\ y \left (x \right ) &= \frac {c_{1}^{2} x +c_{1} x +1}{c_{1} +1} \\ \end{align*}

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 46

DSolve[x (D[y[x],x])^2+(x-y[x])D[y[x],x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to c_1 x+\frac {1}{1+c_1} \\ y(x)\to -x-2 \sqrt {x} \\ y(x)\to 2 \sqrt {x}-x \\ \end{align*}