29.20.3 problem 548

Internal problem ID [5144]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 20
Problem number : 548
Date solved : Tuesday, March 04, 2025 at 08:12:40 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y&=0 \end{align*}

Maple. Time used: 0.848 (sec). Leaf size: 33
ode:=x*(x+2*y(x))*diff(y(x),x)+(2*x-y(x))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\operatorname {RootOf}\left (\textit {\_Z}^{18}+3 \textit {\_Z}^{3} c_{1} x^{3}-c_{1} x^{3}\right )^{15}}{c_{1} x^{2}} \]
Mathematica. Time used: 3.342 (sec). Leaf size: 385
ode=x(x+2 y[x])D[y[x],x]+(2 x-y[x])y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,1\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,2\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,3\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,4\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,5\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+15 \text {$\#$1}^5 x+90 \text {$\#$1}^4 x^2+270 \text {$\#$1}^3 x^3+405 \text {$\#$1}^2 x^4+243 \text {$\#$1} x^5-e^{3 c_1} x^3\&,6\right ] \\ \end{align*}
Sympy. Time used: 0.762 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x + 2*y(x))*Derivative(y(x), x) + (2*x - y(x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} \right )} = C_{1} + \log {\left (\frac {x}{\left (\frac {x}{y{\left (x \right )}} + \frac {1}{3}\right )^{\frac {5}{3}} y{\left (x \right )}} \right )} \]