Internal
problem
ID
[5151]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
20
Problem
number
:
555
Date
solved
:
Tuesday, March 04, 2025 at 08:18:54 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=x*(2*x+3*y(x))*diff(y(x),x)+3*(x+y(x))^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x(2 x+3 y[x])D[y[x],x]+3(x+y[x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x + 3*y(x))*Derivative(y(x), x) + 3*(x + y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)