29.32.23 problem 957

Internal problem ID [5535]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 32
Problem number : 957
Date solved : Monday, January 27, 2025 at 11:35:46 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} 9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y&=0 \end{align*}

Solution by Maple

Time used: 0.268 (sec). Leaf size: 87

dsolve(9*y(x)*diff(y(x),x)^2+4*x^3*diff(y(x),x)-4*x^2*y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {i x^{2}}{3} \\ y \left (x \right ) &= \frac {i x^{2}}{3} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {2 \sqrt {c_{1} x^{2}+9}}{c_{1}} \\ y \left (x \right ) &= \frac {2 \sqrt {c_{1} x^{2}+9}}{c_{1}} \\ y \left (x \right ) &= -\frac {\sqrt {c_{1} \left (-4 x^{2}+c_{1} \right )}}{6} \\ y \left (x \right ) &= \frac {\sqrt {c_{1} \left (-4 x^{2}+c_{1} \right )}}{6} \\ \end{align*}

Solution by Mathematica

Time used: 1.707 (sec). Leaf size: 178

DSolve[9 y[x] (D[y[x],x])^2+4 x^3 D[y[x],x]-4 x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {1}{2} \log (y(x))-\frac {\sqrt {x^6+9 x^2 y(x)^2} \text {arctanh}\left (\frac {x^2}{\sqrt {x^4+9 y(x)^2}+3 y(x)}\right )}{x \sqrt {x^4+9 y(x)^2}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {\sqrt {x^6+9 x^2 y(x)^2} \text {arctanh}\left (\frac {x^2}{\sqrt {x^4+9 y(x)^2}+3 y(x)}\right )}{x \sqrt {x^4+9 y(x)^2}}+\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to -\frac {i x^2}{3} \\ y(x)\to \frac {i x^2}{3} \\ \end{align*}