29.33.10 problem 972

Internal problem ID [5549]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 972
Date solved : Monday, January 27, 2025 at 11:44:53 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational]

\begin{align*} y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.164 (sec). Leaf size: 117

dsolve(y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {18^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}}}{2} \\ y \left (x \right ) &= -\frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (3 i 3^{{1}/{6}}+3^{{2}/{3}}\right )}{4} \\ y \left (x \right ) &= \frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (-3^{{2}/{3}}+3 i 3^{{1}/{6}}\right )}{4} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \operatorname {RootOf}\left (-2 \ln \left (x \right )-3 \left (\int _{}^{\textit {\_Z}}\frac {4 \textit {\_a}^{3}+3 \sqrt {-4 \textit {\_a}^{3}+9}-9}{\textit {\_a} \left (4 \textit {\_a}^{3}-9\right )}d \textit {\_a} \right )+2 c_{1} \right ) x^{{2}/{3}} \\ \end{align*}

Solution by Mathematica

Time used: 0.608 (sec). Leaf size: 208

DSolve[y[x]^2 (D[y[x],x])^2-3 x D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {3}{2} \log (y(x))-\frac {2 \sqrt {1-\frac {9 x^2}{4 y(x)^3}} \text {arcsinh}\left (\frac {3}{2} x \sqrt {-\frac {1}{y(x)^3}}\right )}{\sqrt {-\frac {1}{y(x)^3}} \sqrt {9 x^2-4 y(x)^3}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2 \sqrt {1-\frac {9 x^2}{4 y(x)^3}} \text {arcsinh}\left (\frac {3}{2} x \sqrt {-\frac {1}{y(x)^3}}\right )}{\sqrt {-\frac {1}{y(x)^3}} \sqrt {9 x^2-4 y(x)^3}}+\frac {3}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to \left (-\frac {3}{2}\right )^{2/3} x^{2/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} x^{2/3} \\ y(x)\to -\sqrt [3]{-1} \left (\frac {3}{2}\right )^{2/3} x^{2/3} \\ \end{align*}