Internal
problem
ID
[5572]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
34
Problem
number
:
996
Date
solved
:
Monday, January 27, 2025 at 12:07:16 PM
CAS
classification
:
[_quadrature]
Time used: 0.052 (sec). Leaf size: 469
\begin{align*}
y \left (x \right ) &= 1 \\
y \left (x \right ) &= -\frac {{\left (\left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{1}/{3}}+\frac {12}{\left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{1}/{3}}}\right )}^{2}}{36}+1 \\
y \left (x \right ) &= 1+\frac {{\left (\left (i-\sqrt {3}\right ) \left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}+12 i+12 \sqrt {3}\right )}^{2}}{144 \left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}} \\
y \left (x \right ) &= 1+\frac {{\left (\left (\sqrt {3}+i\right ) \left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}+12 i-12 \sqrt {3}\right )}^{2}}{144 \left (108 c_{1} -108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}} \\
y \left (x \right ) &= -\frac {{\left (\left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{1}/{3}}+\frac {12}{\left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{1}/{3}}}\right )}^{2}}{36}+1 \\
y \left (x \right ) &= 1+\frac {{\left (\left (i-\sqrt {3}\right ) \left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}+12 i+12 \sqrt {3}\right )}^{2}}{144 \left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}} \\
y \left (x \right ) &= 1+\frac {{\left (\left (\sqrt {3}+i\right ) \left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}+12 i-12 \sqrt {3}\right )}^{2}}{144 \left (-108 c_{1} +108 x +12 \sqrt {81 c_{1}^{2}-162 c_{1} x +81 x^{2}-12}\right )^{{2}/{3}}} \\
\end{align*}
Time used: 4.393 (sec). Leaf size: 896
\begin{align*}
y(x)\to \frac {1}{12} \left (2 \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}+\frac {8}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}}+4\right ) \\
y(x)\to \frac {1}{24} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}-\frac {8 \left (1+i \sqrt {3}\right )}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}}+8\right ) \\
y(x)\to \frac {1}{24} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}+\frac {8 i \left (\sqrt {3}+i\right )}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x+8-27 c_1{}^2}}+8\right ) \\
y(x)\to \frac {1}{12} \left (2 \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}+\frac {8}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}}+4\right ) \\
y(x)\to \frac {1}{24} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}+\frac {-8-8 i \sqrt {3}}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}}+8\right ) \\
y(x)\to \frac {1}{24} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}+\frac {-8+8 i \sqrt {3}}{\sqrt [3]{-108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x+8-27 c_1{}^2}}+8\right ) \\
y(x)\to 1 \\
\end{align*}