29.34.5 problem 1000
Internal
problem
ID
[5576]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
34
Problem
number
:
1000
Date
solved
:
Monday, January 27, 2025 at 12:10:41 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*} x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+a^{2} x&=0 \end{align*}
✓ Solution by Maple
Time used: 0.149 (sec). Leaf size: 152
dsolve(x*y(x)^2*diff(y(x),x)^2-y(x)^3*diff(y(x),x)+a^2*x = 0,y(x), singsol=all)
\begin{align*}
y \left (x \right ) &= \sqrt {2}\, \sqrt {-a x} \\
y \left (x \right ) &= -\sqrt {2}\, \sqrt {-a x} \\
y \left (x \right ) &= \sqrt {2}\, \sqrt {a x} \\
y \left (x \right ) &= -\sqrt {2}\, \sqrt {a x} \\
y \left (x \right ) &= \frac {{\mathrm e}^{\frac {c_{1}}{2}+\frac {\operatorname {RootOf}\left (16 x \,a^{2} {\mathrm e}^{2 \textit {\_Z} +2 c_{1}}+{\mathrm e}^{2 \textit {\_Z}} x^{3}-4 \,{\mathrm e}^{3 \textit {\_Z} +2 c_{1}}\right )}{2}}}{\sqrt {x}} \\
y \left (x \right ) &= \sqrt {x}\, {\mathrm e}^{-\frac {c_{1}}{2}+\frac {\operatorname {RootOf}\left (x^{2} \left (16 a^{2} x^{2} {\mathrm e}^{2 \textit {\_Z} -2 c_{1}}-4 \,{\mathrm e}^{-2 c_{1} +3 \textit {\_Z}} x +{\mathrm e}^{2 \textit {\_Z}}\right )\right )}{2}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 18.764 (sec). Leaf size: 219
DSolve[x y[x]^2 (D[y[x],x])^2 - y[x]^3 D[y[x],x]+a^2 x==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to -\sqrt {-2 a^2 e^{-c_1} x^2-\frac {e^{c_1}}{2}} \\
y(x)\to \sqrt {-2 a^2 e^{-c_1} x^2-\frac {e^{c_1}}{2}} \\
y(x)\to -\frac {\sqrt {4 a^2 e^{-c_1} x^2+e^{c_1}}}{\sqrt {2}} \\
y(x)\to \frac {\sqrt {4 a^2 e^{-c_1} x^2+e^{c_1}}}{\sqrt {2}} \\
y(x)\to -\sqrt {2} \sqrt {a} \sqrt {x} \\
y(x)\to -i \sqrt {2} \sqrt {a} \sqrt {x} \\
y(x)\to i \sqrt {2} \sqrt {a} \sqrt {x} \\
y(x)\to \sqrt {2} \sqrt {a} \sqrt {x} \\
\end{align*}