29.34.10 problem 1012

Internal problem ID [5581]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 34
Problem number : 1012
Date solved : Monday, January 27, 2025 at 12:11:35 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 3 x y^{4} {y^{\prime }}^{2}-y^{5} y^{\prime }+1&=0 \end{align*}

Solution by Maple

Time used: 0.093 (sec). Leaf size: 289

dsolve(3*x*y(x)^4*diff(y(x),x)^2-y(x)^5*diff(y(x),x)+1 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}} \\ y \left (x \right ) &= -3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) 3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}}}{2} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}-1\right ) 3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}}}{2} \\ y \left (x \right ) &= -\frac {\left (i \sqrt {3}-1\right ) 3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}}}{2} \\ y \left (x \right ) &= \frac {\left (1+i \sqrt {3}\right ) 3^{{1}/{6}} 2^{{1}/{3}} x^{{1}/{6}}}{2} \\ y \left (x \right ) &= \frac {3^{{1}/{6}} \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{c_{1}} \\ y \left (x \right ) &= -\frac {3^{{1}/{6}} \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{c_{1}} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) 3^{{1}/{6}} \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{2 c_{1}} \\ y \left (x \right ) &= \frac {\left (i 3^{{2}/{3}}-3^{{1}/{6}}\right ) \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{2 c_{1}} \\ y \left (x \right ) &= -\frac {\left (i \sqrt {3}-1\right ) 3^{{1}/{6}} \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{2 c_{1}} \\ y \left (x \right ) &= \frac {\left (i 3^{{2}/{3}}+3^{{1}/{6}}\right ) \left (-\left (-x +c_{1} \right )^{2} c_{1}^{5}\right )^{{1}/{6}}}{2 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 3.056 (sec). Leaf size: 230

DSolve[3 x y[x]^4 (D[y[x],x])^2 -y[x]^5 D[y[x],x]+1==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sqrt [3]{-\frac {1}{2}} e^{-\frac {c_1}{6}} \sqrt [3]{12 x+e^{c_1}} \\ y(x)\to e^{-\frac {c_1}{6}} \sqrt [3]{6 x+\frac {e^{c_1}}{2}} \\ y(x)\to (-1)^{2/3} e^{-\frac {c_1}{6}} \sqrt [3]{6 x+\frac {e^{c_1}}{2}} \\ y(x)\to -\sqrt [3]{-2} \sqrt [6]{3} \sqrt [6]{x} \\ y(x)\to \sqrt [3]{-2} \sqrt [6]{3} \sqrt [6]{x} \\ y(x)\to -\sqrt [3]{2} \sqrt [6]{3} \sqrt [6]{x} \\ y(x)\to \sqrt [3]{2} \sqrt [6]{3} \sqrt [6]{x} \\ y(x)\to -(-1)^{2/3} \sqrt [3]{2} \sqrt [6]{3} \sqrt [6]{x} \\ y(x)\to (-1)^{2/3} \sqrt [3]{2} \sqrt [6]{3} \sqrt [6]{x} \\ \end{align*}