29.34.15 problem 1017

Internal problem ID [5586]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 34
Problem number : 1017
Date solved : Monday, January 27, 2025 at 12:12:47 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} {y^{\prime }}^{3}+x -y&=0 \end{align*}

Solution by Maple

Time used: 0.065 (sec). Leaf size: 211

dsolve(diff(y(x),x)^3+x-y(x) = 0,y(x), singsol=all)
 
\begin{align*} x -\frac {3 \left (-x +y \left (x \right )\right )^{{2}/{3}}}{2}-3 \left (-x +y \left (x \right )\right )^{{1}/{3}}-3 \ln \left (\left (-x +y \left (x \right )\right )^{{1}/{3}}-1\right )-c_{1} &= 0 \\ x +\frac {3 \left (-x +y \left (x \right )\right )^{{2}/{3}}}{4}-\frac {3 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{2}/{3}}}{4}+\frac {3 \left (-x +y \left (x \right )\right )^{{1}/{3}}}{2}+\frac {3 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{1}/{3}}}{2}+6 \ln \left (2\right )-3 \ln \left (-2 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{1}/{3}}-2 \left (-x +y \left (x \right )\right )^{{1}/{3}}-4\right )-c_{1} &= 0 \\ x +\frac {3 \left (-x +y \left (x \right )\right )^{{2}/{3}}}{4}+\frac {3 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{2}/{3}}}{4}+\frac {3 \left (-x +y \left (x \right )\right )^{{1}/{3}}}{2}-\frac {3 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{1}/{3}}}{2}+6 \ln \left (2\right )-3 \ln \left (2 i \sqrt {3}\, \left (-x +y \left (x \right )\right )^{{1}/{3}}-2 \left (-x +y \left (x \right )\right )^{{1}/{3}}-4\right )-c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 6.771 (sec). Leaf size: 271

DSolve[(D[y[x],x])^3 +x-y[x]==0 x,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {3}{2} (y(x)-x)^{2/3}+3 \sqrt [3]{y(x)-x}+3 \log \left (\sqrt [3]{y(x)-x}-1\right )-x&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{4} i \left (-12 i \arctan \left (\frac {2 \sqrt [3]{y(x)-x}+1}{\sqrt {3}}\right )-3 i \left (\sqrt {3}-i\right ) (y(x)-x)^{2/3}+6 i \left (\sqrt {3}+i\right ) \sqrt [3]{y(x)-x}+6 \log \left ((y(x)-x)^{2/3}+\sqrt [3]{y(x)-x}+1\right )-4 x\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {y(x)}{2}+\frac {1}{4} \left (2 (x-y(x))+\frac {3}{2} \left (1-i \sqrt {3}\right ) (y(x)-x)^{2/3}+3 \left (1+i \sqrt {3}\right ) \sqrt [3]{y(x)-x}-6 \log \left (2 i \sqrt [3]{y(x)-x}+\sqrt {2+2 i \sqrt {3}}\right )\right )&=c_1,y(x)\right ] \\ \end{align*}