29.34.17 problem 1019

Internal problem ID [5588]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 34
Problem number : 1019
Date solved : Monday, January 27, 2025 at 12:12:54 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}&=\left (y-a \right )^{2} \left (y-b \right )^{2} \end{align*}

Solution by Maple

Time used: 0.051 (sec). Leaf size: 142

dsolve(diff(y(x),x)^3 = (y(x)-a)^2*(y(x)-b)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= a \\ y \left (x \right ) &= b \\ x -\int _{}^{y \left (x \right )}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} -c_{1} &= 0 \\ \frac {2 \left (\int _{}^{y \left (x \right )}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} \right )+i \left (-c_{1} +x \right ) \sqrt {3}+x -c_{1}}{1+i \sqrt {3}} &= 0 \\ \frac {-2 \left (\int _{}^{y \left (x \right )}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} \right )+i \left (-c_{1} +x \right ) \sqrt {3}-x +c_{1}}{i \sqrt {3}-1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 1.120 (sec). Leaf size: 246

DSolve[(D[y[x],x])^3 ==(y[x]-a)^2 (y[x]-b)^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ][x+c_1] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ]\left [-\sqrt [3]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ]\left [(-1)^{2/3} x+c_1\right ] \\ y(x)\to a \\ y(x)\to b \\ \end{align*}