29.22.12 problem 620

Internal problem ID [5212]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 620
Date solved : Tuesday, March 04, 2025 at 08:32:06 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} \left (a +b +x +y\right )^{2} y^{\prime }&=2 \left (a +y\right )^{2} \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 30
ode:=(a+b+x+y(x))^2*diff(y(x),x) = 2*(y(x)+a)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = -a +\tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\tan \left (\textit {\_Z} \right )\right )+\ln \left (x +b \right )+c_{1} \right )\right ) \left (-x -b \right ) \]
Mathematica. Time used: 0.149 (sec). Leaf size: 25
ode=(a+b+x+y[x])^2 D[y[x],x]==2(a+y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\log (a+y(x))-2 \arctan \left (\frac {b+x}{a+y(x)}\right )=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-2*(a + y(x))**2 + (a + b + x + y(x))**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out