29.35.14 problem 1047

Internal problem ID [5612]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1047
Date solved : Monday, January 27, 2025 at 12:26:44 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.191 (sec). Leaf size: 414

dsolve(diff(y(x),x)^3-y(x)*diff(y(x),x)^2+y(x)^2 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ x -6 \left (\int _{}^{y \left (x \right )}\frac {\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}}{\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{2}/{3}}+2 \left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}} \textit {\_a} +4 \textit {\_a}^{2}}d \textit {\_a} \right )-c_{1} &= 0 \\ \frac {12 \left (\int _{}^{y \left (x \right )}\frac {\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}}{\left (\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}-2 \textit {\_a} \right ) \left (i \sqrt {3}\, \textit {\_a} +\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}+\textit {\_a} \right )}d \textit {\_a} \right )+i \left (-c_{1} +x \right ) \sqrt {3}+x -c_{1}}{1+i \sqrt {3}} &= 0 \\ \frac {12 \left (\int _{}^{y \left (x \right )}\frac {\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}}{\left (-i \sqrt {3}\, \textit {\_a} +\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}+\textit {\_a} \right ) \left (-\left (8 \textit {\_a}^{3}-108 \textit {\_a}^{2}+12 \sqrt {3}\, \sqrt {-4 \textit {\_a}^{5}+27 \textit {\_a}^{4}}\right )^{{1}/{3}}+2 \textit {\_a} \right )}d \textit {\_a} \right )+i \left (-c_{1} +x \right ) \sqrt {3}-x +c_{1}}{i \sqrt {3}-1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 97.577 (sec). Leaf size: 648

DSolve[(D[y[x],x])^3 -y[x]*(D[y[x],x])^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt [3]{2 K[1]^3-27 K[1]^2+3 \sqrt {3} \sqrt {-K[1]^4 (4 K[1]-27)}}}{2 \sqrt [3]{2} K[1]^2+2 \sqrt [3]{2 K[1]^3-27 K[1]^2+3 \sqrt {3} \sqrt {-K[1]^4 (4 K[1]-27)}} K[1]+2^{2/3} \left (2 K[1]^3-27 K[1]^2+3 \sqrt {3} \sqrt {-K[1]^4 (4 K[1]-27)}\right )^{2/3}}dK[1]\&\right ]\left [\frac {x}{6}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt [3]{2 K[2]^3-27 K[2]^2+3 \sqrt {3} \sqrt {-K[2]^4 (4 K[2]-27)}}}{2 i \sqrt [3]{2} \sqrt {3} K[2]^2-2 \sqrt [3]{2} K[2]^2+4 \sqrt [3]{2 K[2]^3-27 K[2]^2+3 \sqrt {3} \sqrt {-K[2]^4 (4 K[2]-27)}} K[2]-i 2^{2/3} \sqrt {3} \left (2 K[2]^3-27 K[2]^2+3 \sqrt {3} \sqrt {-K[2]^4 (4 K[2]-27)}\right )^{2/3}-2^{2/3} \left (2 K[2]^3-27 K[2]^2+3 \sqrt {3} \sqrt {-K[2]^4 (4 K[2]-27)}\right )^{2/3}}dK[2]\&\right ]\left [\frac {x}{12}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt [3]{2 K[3]^3-27 K[3]^2+3 \sqrt {3} \sqrt {-K[3]^4 (4 K[3]-27)}}}{-2 i \sqrt [3]{2} \sqrt {3} K[3]^2-2 \sqrt [3]{2} K[3]^2+4 \sqrt [3]{2 K[3]^3-27 K[3]^2+3 \sqrt {3} \sqrt {-K[3]^4 (4 K[3]-27)}} K[3]+i 2^{2/3} \sqrt {3} \left (2 K[3]^3-27 K[3]^2+3 \sqrt {3} \sqrt {-K[3]^4 (4 K[3]-27)}\right )^{2/3}-2^{2/3} \left (2 K[3]^3-27 K[3]^2+3 \sqrt {3} \sqrt {-K[3]^4 (4 K[3]-27)}\right )^{2/3}}dK[3]\&\right ]\left [\frac {x}{12}+c_1\right ] \\ \end{align*}