Internal
problem
ID
[5237]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
646
Date
solved
:
Tuesday, March 04, 2025 at 08:41:43 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x^2-x*y(x)+y(x)^2)*diff(y(x),x)+(x^2+x*y(x)+y(x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x(x^2-x y[x]+y[x]^2)D[y[x],x]+(x^2+x y[x]+y[x]^2)y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - x*y(x) + y(x)**2)*Derivative(y(x), x) + (x**2 + x*y(x) + y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)