29.36.14 problem 1080

Internal problem ID [5641]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 36
Problem number : 1080
Date solved : Monday, January 27, 2025 at 12:49:20 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} 16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.145 (sec). Leaf size: 102

dsolve(16*y(x)^2*diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {\left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= \frac {\left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= -\frac {i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= \frac {i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \sqrt {2}\, \sqrt {c_{1} \left (8 c_{1}^{2}+x \right )} \\ y \left (x \right ) &= -\sqrt {2}\, \sqrt {c_{1} \left (8 c_{1}^{2}+x \right )} \\ \end{align*}

Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 107

DSolve[16 y[x]^2 (D[y[x],x])^3 +2 x D[y[x],x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \sqrt {c_1 \left (x+2 c_1{}^2\right )} \\ y(x)\to -\frac {\sqrt [4]{-2} x^{3/4}}{3^{3/4}} \\ y(x)\to \frac {(1-i) x^{3/4}}{\sqrt [4]{2} 3^{3/4}} \\ y(x)\to \frac {i \sqrt [4]{-2} x^{3/4}}{3^{3/4}} \\ y(x)\to \frac {\sqrt [4]{-2} x^{3/4}}{3^{3/4}} \\ \end{align*}