29.24.12 problem 674

Internal problem ID [5265]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 674
Date solved : Tuesday, March 04, 2025 at 08:58:39 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} \left (1-x^{4} y^{2}\right ) y^{\prime }&=x^{3} y^{3} \end{align*}

Maple. Time used: 0.941 (sec). Leaf size: 157
ode:=(1-x^4*y(x)^2)*diff(y(x),x) = x^3*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \frac {\sqrt {-c_{1} -\sqrt {c_{1} \left (x^{4}+c_{1} \right )}}\, \left (c_{1} -\sqrt {c_{1} \left (x^{4}+c_{1} \right )}\right )}{c_{1} x^{4}} \\ y \left (x \right ) &= \frac {\sqrt {-c_{1} +\sqrt {c_{1} \left (x^{4}+c_{1} \right )}}\, \left (c_{1} +\sqrt {c_{1} \left (x^{4}+c_{1} \right )}\right )}{c_{1} x^{4}} \\ y \left (x \right ) &= \frac {\sqrt {-c_{1} -\sqrt {c_{1} \left (x^{4}+c_{1} \right )}}\, \left (-c_{1} +\sqrt {c_{1} \left (x^{4}+c_{1} \right )}\right )}{c_{1} x^{4}} \\ y \left (x \right ) &= \frac {\left (-c_{1} -\sqrt {c_{1} \left (x^{4}+c_{1} \right )}\right ) \sqrt {-c_{1} +\sqrt {c_{1} \left (x^{4}+c_{1} \right )}}}{c_{1} x^{4}} \\ \end{align*}
Mathematica. Time used: 13.616 (sec). Leaf size: 122
ode=(1-x^4 y[x]^2)D[y[x],x]==x^3 y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\frac {1-\sqrt {1+4 c_1 x^4}}{x^4}} \\ y(x)\to \sqrt {\frac {1-\sqrt {1+4 c_1 x^4}}{x^4}} \\ y(x)\to -\sqrt {\frac {1+\sqrt {1+4 c_1 x^4}}{x^4}} \\ y(x)\to \sqrt {\frac {1+\sqrt {1+4 c_1 x^4}}{x^4}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 4.459 (sec). Leaf size: 85
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*y(x)**3 + (-x**4*y(x)**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt {\frac {1 - \sqrt {C_{1} x^{4} + 1}}{x^{4}}}, \ y{\left (x \right )} = - \sqrt {\frac {\sqrt {C_{1} x^{4} + 1} + 1}{x^{4}}}, \ y{\left (x \right )} = \sqrt {\frac {\sqrt {C_{1} x^{4} + 1} + 1}{x^{4}}}, \ y{\left (x \right )} = - \sqrt {\frac {1 - \sqrt {C_{1} x^{4} + 1}}{x^{4}}}\right ] \]