29.37.10 problem 1126

Internal problem ID [5668]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1126
Date solved : Tuesday, January 28, 2025 at 02:41:57 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.131 (sec). Leaf size: 338

dsolve(a*x*sqrt(1+diff(y(x),x)^2)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} \frac {x \sqrt {\frac {-a^{2} x^{2}+a^{2} y \left (x \right )^{2}+2 \sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a y \left (x \right )+x^{2}+y \left (x \right )^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}-{\mathrm e}^{\frac {\operatorname {arcsinh}\left (\frac {\sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a +y \left (x \right )}{x \left (a^{2}-1\right )}\right )}{a}} c_{1}}{\sqrt {\frac {-a^{2} x^{2}+a^{2} y \left (x \right )^{2}+2 \sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a y \left (x \right )+x^{2}+y \left (x \right )^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}} &= 0 \\ \frac {x \sqrt {\frac {-2 \sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a y \left (x \right )+\left (a^{2}+1\right ) y \left (x \right )^{2}-a^{2} x^{2}+x^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}-{\mathrm e}^{-\frac {\operatorname {arcsinh}\left (\frac {\sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a -y \left (x \right )}{x \left (a^{2}-1\right )}\right )}{a}} c_{1}}{\sqrt {\frac {-2 \sqrt {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}\, a y \left (x \right )+\left (a^{2}+1\right ) y \left (x \right )^{2}-a^{2} x^{2}+x^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 1.700 (sec). Leaf size: 223

DSolve[a*x*Sqrt[1+(D[y[x],x])^2]+x*D[y[x],x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {2 i \arctan \left (\frac {y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )-2 i a \arctan \left (\frac {a y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+a \log \left (\frac {y(x)^2}{x^2}+1\right )}{2 a^2-2}&=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {-2 i \arctan \left (\frac {y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+2 i a \arctan \left (\frac {a y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+a \log \left (\frac {y(x)^2}{x^2}+1\right )}{2 a^2-2}&=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ] \\ \end{align*}