29.25.17 problem 714

Internal problem ID [5304]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 25
Problem number : 714
Date solved : Tuesday, March 04, 2025 at 09:19:08 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x \left (1-x^{2} y^{4}\right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.193 (sec). Leaf size: 133
ode:=x*(1-y(x)^4*x^2)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {\sqrt {2}\, \sqrt {x c_{1} \left (x -\sqrt {-4 c_{1}^{2}+x^{2}}\right )}}{2 x c_{1}} \\ y \left (x \right ) &= \frac {\sqrt {2}\, \sqrt {x c_{1} \left (x -\sqrt {-4 c_{1}^{2}+x^{2}}\right )}}{2 x c_{1}} \\ y \left (x \right ) &= -\frac {\sqrt {2}\, \sqrt {x c_{1} \left (x +\sqrt {-4 c_{1}^{2}+x^{2}}\right )}}{2 x c_{1}} \\ y \left (x \right ) &= \frac {\sqrt {2}\, \sqrt {x c_{1} \left (x +\sqrt {-4 c_{1}^{2}+x^{2}}\right )}}{2 x c_{1}} \\ \end{align*}
Mathematica. Time used: 12.028 (sec). Leaf size: 172
ode=x(1-x^2 y[x]^4)D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {c_1-\frac {\sqrt {x^2 \left (-1+c_1{}^2 x^2\right )}}{x^2}} \\ y(x)\to \sqrt {c_1-\frac {\sqrt {x^2 \left (-1+c_1{}^2 x^2\right )}}{x^2}} \\ y(x)\to -\sqrt {\frac {\sqrt {x^2 \left (-1+c_1{}^2 x^2\right )}}{x^2}+c_1} \\ y(x)\to \sqrt {\frac {\sqrt {x^2 \left (-1+c_1{}^2 x^2\right )}}{x^2}+c_1} \\ y(x)\to 0 \\ y(x)\to -\frac {1}{\sqrt [4]{-x^2}} \\ y(x)\to \frac {1}{\sqrt [4]{-x^2}} \\ \end{align*}
Sympy. Time used: 7.956 (sec). Leaf size: 126
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(-x**2*y(x)**4 + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {e^{C_{1}} - \frac {\sqrt {x^{2} e^{2 C_{1}} - 4}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {e^{C_{1}} - \frac {\sqrt {x^{2} e^{2 C_{1}} - 4}}{x}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {e^{C_{1}} + \frac {\sqrt {x^{2} e^{2 C_{1}} - 4}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {e^{C_{1}} + \frac {\sqrt {x^{2} e^{2 C_{1}} - 4}}{x}}}{2}\right ] \]