30.1.10 problem Example, page 49

Internal problem ID [5698]
Book : Differential and integral calculus, vol II By N. Piskunov. 1974
Section : Chapter 1
Problem number : Example, page 49
Date solved : Monday, January 27, 2025 at 01:08:12 PM
CAS classification : [[_homogeneous, `class C`], _rational, _dAlembert]

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.053 (sec). Leaf size: 53

dsolve(y(x)=x*diff(y(x),x)^2+diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= \frac {\left (x +1+\sqrt {\left (x +1\right ) \left (c_{1} +1\right )}\right )^{2}}{x +1} \\ y \left (x \right ) &= \frac {\left (-x -1+\sqrt {\left (x +1\right ) \left (c_{1} +1\right )}\right )^{2}}{x +1} \\ \end{align*}

Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 57

DSolve[y[x]==x*(D[y[x],x])^2+(D[y[x],x])^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x-c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4} \\ y(x)\to x+c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4} \\ y(x)\to 0 \\ \end{align*}