Internal
problem
ID
[5319]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
25
Problem
number
:
729
Date
solved
:
Tuesday, March 04, 2025 at 09:22:05 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(x-(x^2+y(x)^2)^(1/2))*diff(y(x),x) = y(x); dsolve(ode,y(x), singsol=all);
ode=(x-Sqrt[x^2+y[x]^2])*D[y[x],x]==y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - sqrt(x**2 + y(x)**2))*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)