31.1.16 problem 6.3

Internal problem ID [5714]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 6.3
Date solved : Monday, January 27, 2025 at 01:11:13 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 56

dsolve(diff(y(x),x)+y(x)/(1-x^2)^(3/2)=(x+sqrt(1-x^2))/(1-x^2)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = \left (\int \frac {{\mathrm e}^{\frac {x}{\sqrt {-x^{2}+1}}} \left (x +\sqrt {-x^{2}+1}\right )}{\left (x -1\right )^{2} \left (x +1\right )^{2}}d x +c_{1} \right ) {\mathrm e}^{-\frac {x}{\sqrt {-x^{2}+1}}} \]

Solution by Mathematica

Time used: 0.167 (sec). Leaf size: 38

DSolve[D[y[x],x]+y[x]/(1-x^2)^(3/2)==(x+Sqrt[1-x^2])/(1-x^2)^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {x}{\sqrt {1-x^2}}+c_1 e^{-\frac {x}{\sqrt {1-x^2}}} \]