29.26.26 problem 762
Internal
problem
ID
[5347]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
26
Problem
number
:
762
Date
solved
:
Tuesday, March 04, 2025 at 09:30:11 PM
CAS
classification
:
[_quadrature]
\begin{align*} {y^{\prime }}^{2}&=\left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \end{align*}
✓ Maple. Time used: 0.046 (sec). Leaf size: 75
ode:=diff(y(x),x)^2 = (y(x)-a)*(y(x)-b)*(y(x)-c);
dsolve(ode,y(x), singsol=all);
\begin{align*}
y \left (x \right ) &= a \\
y \left (x \right ) &= b \\
y \left (x \right ) &= c \\
x -\int _{}^{y \left (x \right )}\frac {1}{\sqrt {\left (\textit {\_a} -a \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -c \right )}}d \textit {\_a} -c_{1} &= 0 \\
x +\int _{}^{y \left (x \right )}\frac {1}{\sqrt {\left (\textit {\_a} -a \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -c \right )}}d \textit {\_a} -c_{1} &= 0 \\
\end{align*}
✓ Mathematica. Time used: 33.309 (sec). Leaf size: 188
ode=(D[y[x],x])^2==(y[x]-a)(y[x]-b)*(y[x]-c);
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} (c_1-i x)|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} (c_1-i x)|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\
y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} (i x+c_1)|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} (i x+c_1)|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\
y(x)\to a \\
y(x)\to b \\
y(x)\to c \\
\end{align*}
✓ Sympy. Time used: 16.177 (sec). Leaf size: 44
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
y = Function("y")
ode = Eq((a - y(x))*(-b + y(x))*(-c + y(x)) + Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- \left (- y + a\right ) \left (- y + b\right ) \left (- y + c\right )}}\, dy = C_{1} - x, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- \left (- y + a\right ) \left (- y + b\right ) \left (- y + c\right )}}\, dy = C_{1} + x\right ]
\]