29.26.29 problem 765

Internal problem ID [5350]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 765
Date solved : Tuesday, March 04, 2025 at 09:31:26 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \end{align*}

Maple. Time used: 0.118 (sec). Leaf size: 220
ode:=diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\, \left (-\ln \left (2\right )+\ln \left (-a -b +2 y \left (x \right )+2 \sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\right )\right )}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}-\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}d \textit {\_a}}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+c_{1} &= 0 \\ \frac {\sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\, \left (-\ln \left (2\right )+\ln \left (-a -b +2 y \left (x \right )+2 \sqrt {\left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}\right )\right )}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y \left (x \right )-a \right ) \left (y \left (x \right )-b \right )}d \textit {\_a}}{\sqrt {y \left (x \right )-a}\, \sqrt {y \left (x \right )-b}}+c_{1} &= 0 \\ \end{align*}
Mathematica. Time used: 4.224 (sec). Leaf size: 89
ode=(D[y[x],x])^2+ f[x]*(y[x]-a)*(y[x]-b)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2} \left ((b-a) \cosh \left (\int _1^x-i \sqrt {f(K[2])}dK[2]+c_1\right )+a+b\right ) \\ y(x)\to \frac {1}{2} \left ((b-a) \cosh \left (\int _1^xi \sqrt {f(K[3])}dK[3]+c_1\right )+a+b\right ) \\ y(x)\to a \\ y(x)\to b \\ \end{align*}
Sympy. Time used: 20.840 (sec). Leaf size: 272
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
f = Function("f") 
ode = Eq((-a + y(x))*(-b + y(x))*f(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} \frac {y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} & \text {for}\: \left |{y{\left (x \right )}}\right | < 1 \\\frac {{G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} + \frac {{G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} & \text {otherwise} \end {cases} + \frac {\int \sqrt {- \left (a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}\right ) f{\left (x \right )}}\, dx}{\sqrt {\left (a - y{\left (x \right )}\right ) \left (b - y{\left (x \right )}\right )}} = C_{1}, \ \begin {cases} \frac {y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} & \text {for}\: \left |{y{\left (x \right )}}\right | < 1 \\\frac {{G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} + \frac {{G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}}} & \text {otherwise} \end {cases} - \frac {\int \sqrt {- \left (a b - a y{\left (x \right )} - b y{\left (x \right )} + y^{2}{\left (x \right )}\right ) f{\left (x \right )}}\, dx}{\sqrt {\left (a - y{\left (x \right )}\right ) \left (b - y{\left (x \right )}\right )}} = C_{1}\right ] \]