31.5.5 problem 5

Internal problem ID [5748]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 6
Problem number : 5
Date solved : Monday, January 27, 2025 at 01:12:31 PM
CAS classification : [_rational, [_Riccati, _special]]

\begin{align*} u^{\prime }-u^{2}&=\frac {2}{x^{{8}/{3}}} \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 78

dsolve(diff(u(x),x)-u(x)^2=2*x^(-8/3),u(x), singsol=all)
 
\[ u \left (x \right ) = -\frac {3 \left (\tan \left (3 \sqrt {2}\, \left (\left (\frac {1}{x}\right )^{{1}/{3}}-c_{1} \right )\right ) \sqrt {2}\, x \left (\frac {1}{x}\right )^{{2}/{3}}+\frac {x \left (\frac {1}{x}\right )^{{1}/{3}}}{3}-2\right )}{\left (\frac {1}{x}\right )^{{1}/{3}} x^{2} \left (3 \sqrt {2}\, \left (\frac {1}{x}\right )^{{1}/{3}} \tan \left (3 \sqrt {2}\, \left (\left (\frac {1}{x}\right )^{{1}/{3}}-c_{1} \right )\right )+1\right )} \]

Solution by Mathematica

Time used: 0.244 (sec). Leaf size: 215

DSolve[D[u[x],x]-u[x]^2==x^(-8/3),u[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} u(x)\to -\frac {\left (-9 \sqrt [3]{\frac {1}{x}}+c_1 \left (8-24 \left (\frac {1}{x}\right )^{2/3}\right )\right ) \cos \left (3 \sqrt [3]{\frac {1}{x}}\right )+3 \left (-3 \left (\frac {1}{x}\right )^{2/3}+8 c_1 \sqrt [3]{\frac {1}{x}}+1\right ) \sin \left (3 \sqrt [3]{\frac {1}{x}}\right )}{x \left (\left (-9 \sqrt [3]{\frac {1}{x}}+8 c_1\right ) \cos \left (3 \sqrt [3]{\frac {1}{x}}\right )+3 \left (1+8 c_1 \sqrt [3]{\frac {1}{x}}\right ) \sin \left (3 \sqrt [3]{\frac {1}{x}}\right )\right )} \\ u(x)\to \frac {\left (3 \left (\frac {1}{x}\right )^{2/3}-1\right ) \cos \left (3 \sqrt [3]{\frac {1}{x}}\right )-3 \sqrt [3]{\frac {1}{x}} \sin \left (3 \sqrt [3]{\frac {1}{x}}\right )}{x \left (3 \sqrt [3]{\frac {1}{x}} \sin \left (3 \sqrt [3]{\frac {1}{x}}\right )+\cos \left (3 \sqrt [3]{\frac {1}{x}}\right )\right )} \\ \end{align*}