29.27.19 problem 785

Internal problem ID [5369]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 785
Date solved : Tuesday, March 04, 2025 at 09:32:15 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 22
ode:=diff(y(x),x)^2+(1-x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \frac {\left (x -1\right )^{2}}{4} \\ y \left (x \right ) &= c_{1} \left (x -1-c_{1} \right ) \\ \end{align*}
Mathematica. Time used: 0.011 (sec). Leaf size: 28
ode=(D[y[x],x])^2+(1-x)*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 (x-1-c_1) \\ y(x)\to \frac {1}{4} (x-1)^2 \\ \end{align*}
Sympy. Time used: 2.322 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x)*Derivative(y(x), x) + y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{4} - \frac {x}{2} - \frac {\left (C_{1} + x\right )^{2}}{4} + \frac {1}{4} \]