31.6.17 problem 17

Internal problem ID [5766]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 7
Problem number : 17
Date solved : Tuesday, January 28, 2025 at 03:01:01 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} x +y^{\prime } y&=a \sqrt {1+{y^{\prime }}^{2}} \end{align*}

Solution by Maple

Time used: 0.161 (sec). Leaf size: 237

dsolve(x+y(x)*diff(y(x),x)=a*sqrt(1+(diff(y(x),x))^2),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \csc \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right )\right )\right ) \operatorname {csgn}\left (\sec \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right )\right )\right )\right ) a -\cot \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} -x \right )\right )\right ) x \\ y \left (x \right ) &= \csc \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right )\right )\right ) \operatorname {csgn}\left (\sec \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right )\right )\right )\right ) a -\cot \left (\operatorname {RootOf}\left (\left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a +\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right ) \left (\sin \left (\textit {\_Z} \right ) \textit {\_Z} a -\cos \left (\textit {\_Z} \right ) a +\sin \left (\textit {\_Z} \right ) c_{1} +x \right )\right )\right ) x \\ \end{align*}

Solution by Mathematica

Time used: 3.822 (sec). Leaf size: 150

DSolve[x+y[x]*D[y[x],x]==a*Sqrt[1+(D[y[x],x])^2],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {a^2 \arctan \left (\frac {\sqrt {a^2 \left (-a^2+x^2+y(x)^2\right )}}{a^2}\right )+a^2 \arctan \left (\frac {x}{y(x)}\right )-\sqrt {a^2 \left (-a^2+x^2+y(x)^2\right )}}{a^2}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {-a^2 \arctan \left (\frac {\sqrt {a^2 \left (-a^2+x^2+y(x)^2\right )}}{a^2}\right )+a^2 \arctan \left (\frac {x}{y(x)}\right )+\sqrt {a^2 \left (-a^2+x^2+y(x)^2\right )}}{a^2}&=c_1,y(x)\right ] \\ \end{align*}