Internal
problem
ID
[5408]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
29
Problem
number
:
825
Date
solved
:
Tuesday, March 04, 2025 at 09:35:57 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x)^2-2*x^3*y(x)^2*diff(y(x),x)-4*x^2*y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^2-2*x^3*y[x]^2*D[y[x],x]-4*x^2*y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**3*y(x)**2*Derivative(y(x), x) - 4*x**2*y(x)**3 + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(x**2*y(x)**2 + sqrt((x**4*y(x) + 4)*y(x)**3)) + Derivative(y(x), x) cannot be solved by the factorable group method