Internal
problem
ID
[5801]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
9
Problem
number
:
Exact
Differential
equations.
Exercise
9.6,
page
79
Date
solved
:
Monday, January 27, 2025 at 01:19:41 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
Time used: 0.003 (sec). Leaf size: 205
\begin{align*}
y \left (x \right ) &= -\frac {2 \left (c_{1} x^{2}-\frac {\left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{2}/{3}}}{4}\right )}{\sqrt {c_{1}}\, \left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}{4 \sqrt {c_{1}}}-\frac {x^{2} \sqrt {c_{1}}\, \left (i \sqrt {3}-1\right )}{\left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {4 i \sqrt {3}\, c_{1} x^{2}+i \left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{2}/{3}} \sqrt {3}+4 c_{1} x^{2}-\left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{2}/{3}}}{4 \left (4+4 \sqrt {4 x^{6} c_{1}^{3}+1}\right )^{{1}/{3}} \sqrt {c_{1}}} \\
\end{align*}
Time used: 13.199 (sec). Leaf size: 401
\begin{align*}
y(x)\to \frac {\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}} \\
y(x)\to \frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \left (\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}\right ){}^{2/3}+\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x^2}{4 \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {4 x^6+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}} \\
y(x)\to 0 \\
y(x)\to \frac {1}{2} \sqrt [6]{x^6} \left (\frac {\left (1-i \sqrt {3}\right ) \left (x^6\right )^{2/3}}{x^4}-i \sqrt {3}-1\right ) \\
y(x)\to \frac {1}{2} \sqrt [6]{x^6} \left (\frac {\left (1+i \sqrt {3}\right ) \left (x^6\right )^{2/3}}{x^4}+i \sqrt {3}-1\right ) \\
y(x)\to \sqrt [6]{x^6}-\frac {\left (x^6\right )^{5/6}}{x^4} \\
\end{align*}