32.3.6 problem Exact Differential equations. Exercise 9.9, page 79

Internal problem ID [5804]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number : Exact Differential equations. Exercise 9.9, page 79
Date solved : Monday, January 27, 2025 at 01:19:43 PM
CAS classification : [_exact]

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 28

dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ -x^{2} y \left (x \right )+x \,{\mathrm e}^{y \left (x \right )}+\frac {x^{2}}{2}+\frac {y \left (x \right )^{2}}{2}+c_{1} = 0 \]

Solution by Mathematica

Time used: 0.371 (sec). Leaf size: 35

DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x^2 (-y(x))+\frac {x^2}{2}+x e^{y(x)}+\frac {y(x)^2}{2}=c_1,y(x)\right ] \]