32.3.12 problem Exact Differential equations. Exercise 9.16, page 79

Internal problem ID [5810]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number : Exact Differential equations. Exercise 9.16, page 79
Date solved : Monday, January 27, 2025 at 01:19:51 PM
CAS classification : [_separable]

\begin{align*} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{4}\right )&=\frac {\pi }{4} \end{align*}

Solution by Maple

Time used: 0.429 (sec). Leaf size: 15

dsolve([sin(x)*cos(y(x))+cos(x)*sin(y(x))*diff(y(x),x)=0,y(1/4*Pi) = 1/4*Pi],y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\pi }{2}-\arcsin \left (\frac {\sec \left (x \right )}{2}\right ) \]

Solution by Mathematica

Time used: 5.974 (sec). Leaf size: 12

DSolve[{Sin[x]*Cos[y[x]]+Cos[x]*Sin[y[x]]*D[y[x],x]==0,y[Pi/4]==Pi/4},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \arccos \left (\frac {\sec (x)}{2}\right ) \]