Internal
problem
ID
[5449]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
30
Problem
number
:
868
Date
solved
:
Tuesday, March 04, 2025 at 09:39:46 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+x+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x (D[y[x],x])^2-2 y[x] D[y[x],x]+x +2 y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x)**2 + x - 2*y(x)*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)