32.5.11 problem Exercise 11.12, page 97

Internal problem ID [5849]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.12, page 97
Date solved : Monday, January 27, 2025 at 01:20:42 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+2 y&=\frac {3 \,{\mathrm e}^{-2 x}}{4} \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 17

dsolve(diff(y(x),x)+2*y(x)=3/4*exp(-2*x),y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\left (3 x +4 c_{1} \right ) {\mathrm e}^{-2 x}}{4} \]

Solution by Mathematica

Time used: 0.059 (sec). Leaf size: 22

DSolve[D[y[x],x]+2*y[x]==3/4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{4} e^{-2 x} (3 x+4 c_1) \]