32.5.14 problem Exercise 11.15, page 97

Internal problem ID [5852]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.15, page 97
Date solved : Monday, January 27, 2025 at 01:20:48 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 15

dsolve(diff(y(x),x)+y(x)*cos(x)=1/2*sin(2*x),y(x), singsol=all)
 
\[ y \left (x \right ) = \sin \left (x \right )-1+{\mathrm e}^{-\sin \left (x \right )} c_{1} \]

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 18

DSolve[D[y[x],x]+y[x]*Cos[x]==1/2*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \sin (x)+c_1 e^{-\sin (x)}-1 \]