29.30.33 problem 893

Internal problem ID [5473]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 893
Date solved : Tuesday, March 04, 2025 at 09:40:41 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x^{2} {y^{\prime }}^{2}+x^{2}-y^{2}&=0 \end{align*}

Maple. Time used: 0.055 (sec). Leaf size: 44
ode:=x^2*diff(y(x),x)^2+x^2-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {x \left (\operatorname {LambertW}\left (-{\mathrm e} c_{1} x^{4}\right )-1\right )}{2 \operatorname {LambertW}\left (-{\mathrm e} c_{1} x^{4}\right ) \sqrt {-\frac {1}{\operatorname {LambertW}\left (-{\mathrm e} c_{1} x^{4}\right )}}} \]
Mathematica. Time used: 7.539 (sec). Leaf size: 183
ode=x^2 (D[y[x],x])^2+x^2-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}+1}}{\sqrt {\frac {y(x)}{x}-1}}\right )-\frac {\sqrt {\frac {y(x)}{x}-1} \sqrt {\frac {y(x)}{x}+1}}{\left (\sqrt {\frac {y(x)}{x}-1}-\sqrt {\frac {y(x)}{x}+1}\right )^2}&=\log (x)+c_1,y(x)\right ] \\ \text {Solve}\left [\text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}+1}}{\sqrt {\frac {y(x)}{x}-1}}\right )-\frac {\sqrt {\frac {y(x)}{x}-1} \sqrt {\frac {y(x)}{x}+1}}{\left (\sqrt {\frac {y(x)}{x}-1}+\sqrt {\frac {y(x)}{x}+1}\right )^2}&=-\log (x)+c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 14.360 (sec). Leaf size: 61
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 + x**2 - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {1 - u_{1}^{2}}}{u_{1} \left (\sqrt {1 - u_{1}^{2}} + 1\right )}\, du_{1}}, \ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {1 - u_{1}^{2}}}{u_{1} \left (\sqrt {1 - u_{1}^{2}} - 1\right )}\, du_{1}}\right ] \]