32.6.8 problem Exercise 12.8, page 103

Internal problem ID [5873]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.8, page 103
Date solved : Monday, January 27, 2025 at 01:22:42 PM
CAS classification : [[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2&=0 \end{align*}

Solution by Maple

Time used: 0.954 (sec). Leaf size: 32

dsolve((3*x+2*y(x)+1)*diff(y(x),x)+(4*x+3*y(x)+2)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {-\sqrt {\left (x -1\right )^{2} c_{1}^{2}+4}+\left (-3 x -1\right ) c_{1}}{2 c_{1}} \]

Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 61

DSolve[(3*x+2*y[x]+1)*D[y[x],x]+(4*x+3*y[x]+2)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (-\sqrt {x^2-2 x+1+4 c_1}-3 x-1\right ) \\ y(x)\to \frac {1}{2} \left (\sqrt {x^2-2 x+1+4 c_1}-3 x-1\right ) \\ \end{align*}