32.6.12 problem Exercise 12.12, page 103

Internal problem ID [5877]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.12, page 103
Date solved : Monday, January 27, 2025 at 01:22:56 PM
CAS classification : [_exact]

\begin{align*} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 21

dsolve((y(x)^2*exp(x*y(x)^2)+4*x^3)+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ {\mathrm e}^{y \left (x \right )^{2} x}+x^{4}-y \left (x \right )^{3}+c_{1} = 0 \]

Solution by Mathematica

Time used: 0.304 (sec). Leaf size: 24

DSolve[(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x^4+e^{x y(x)^2}-y(x)^3=c_1,y(x)\right ] \]