32.6.24 problem Exercise 12.24, page 103

Internal problem ID [5889]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.24, page 103
Date solved : Monday, January 27, 2025 at 01:24:51 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 13

dsolve(diff(y(x),x)+y(x)*cos(x)=exp(-sin(x)),y(x), singsol=all)
 
\[ y \left (x \right ) = \left (x +c_{1} \right ) {\mathrm e}^{-\sin \left (x \right )} \]

Solution by Mathematica

Time used: 0.134 (sec). Leaf size: 16

DSolve[D[y[x],x]+y[x]*Cos[x]==Exp[-Sin[x]],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (x+c_1) e^{-\sin (x)} \]