29.31.30 problem 931

Internal problem ID [5509]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 31
Problem number : 931
Date solved : Tuesday, March 04, 2025 at 09:50:26 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \end{align*}

Maple. Time used: 0.289 (sec). Leaf size: 33
ode:=x*(-x^2+1)*diff(y(x),x)^2-2*(-x^2+1)*y(x)*diff(y(x),x)+x*(1-y(x)^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -x \\ y \left (x \right ) &= x \\ y \left (x \right ) &= \sqrt {-c_{1}^{2}+1}+\sqrt {x^{2}-1}\, c_{1} \\ \end{align*}
Mathematica. Time used: 2.68 (sec). Leaf size: 111
ode=x*(1-x^2)*(D[y[x],x])^2-2*(1-x^2)*y[x]*D[y[x],x]+x*(1-y[x]^2)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x \cos \left (\frac {\sqrt {x^2-1} \arctan \left (\sqrt {x^2-1}\right )}{\sqrt {x-1} \sqrt {x+1}}-i c_1\right ) \\ y(x)\to -x \cos \left (\frac {\sqrt {x^2-1} \arctan \left (\sqrt {x^2-1}\right )}{\sqrt {x-1} \sqrt {x+1}}+i c_1\right ) \\ y(x)\to -x \\ y(x)\to x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x**2)*Derivative(y(x), x)**2 + x*(1 - y(x)**2) - (2 - 2*x**2)*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out